Загустители и гелеобразователи

ОБЩИЕ СВЕДЕНИЯ

Загустители и гелеобразователи по химической природе представляют собой линейные или разветвлённые полимерные цепи с гидрофильными группами, которые вступают в физическое взаимодействие с имеющейся в продукте водой. За исключением микробных полисахаридов - ксантана Е 415 и геллановой камеди Е 418, а также желатина (животный белок) - гелеобразователи и загустители являются углеводами (полисахаридами) растительного происхождения, растительными гидроколлоидами. Их получают из наземных растений или водорослей. Из бурых водорослей получают альгиновую кисоту Е 400 и её соли Е 401...404. Наиболее популярные гелеобразователи - агар (агар-агар) Е 406 и карра-гинан (в том числе фурцеллеран) Е 407 - получают из красных морских водорослей, а пектин Е 440 - чаще всего из яблок и цитрусовых. Полисахариды, полученные из растений, подразделяют на защитные коллоиды, выделяемые растением при повреждениях (экссудаты, смолы), и муку семян (резервные полисахариды растений). К смолам относятся: ара-биногалактан Е 409, трагакант Е 413, гуммиарабик Е 414, камедь карайи Е 416, камедь гхатти Е 419. К резервным полисахаридам - мука семян рожкового дерева Е 410, овсяная камедь Е 411, гуаровая камедь Е 412 и камедь тары Е 417.

По химическому строению гидроколлоиды подразделяют на три группы: кислые полисахариды с остатками уроновой кислоты, кислые полисахариды с остатками серной кислоты и нейтральные полисахариды. В качестве загустителей применяются кислые гидроколлоиды с остатками уроновой кислоты (например, трагакант Е 413 и гуммиарабик Е 414), а также нейтральные соединения (например, камедь бобов рожкового дерева Е 410 и гуар Е 412). Кислые полисахариды с остатками серной кислоты применяются в качестве гелеобразователей (например, агар Е 406 и каррагинан Е 407).

Эффективность действия гидроколлоидов определяется не только структурными особенностями их молекул (длиной цепи, степенью разветвления, природой мономерных звеньев и функциональных групп и их расположением в молекуле, наличием гликозидных связей), но и составом пищевого продукта, способом его получения и условиями хранения. На растворение и диспергирование гидроколлоидов влияют размер и форма их частиц, удельная поверхность, гранулометрический состав. Большое значение имеет способ приготовления раствора (дисперсии): интенсивность и время перемешивания, температура, значение рН, присутствие электролитов, минеральных веществ и гидратируемых веществ (например, сахара), возможность образования комплексов с другими имеющимися в системе соединениями, процессы распада, вызываемые ферментами или микроорганизмами. Есть загустители, которые могут образовывать ассоциаты с другими высокомолекулярными компонентами пищевого продукта, что вызывает заметное возрастание вязкости.

Поведение нейтральных полисахаридов, в отличие от полиэлектролитов, практически не зависит от изменения pH среды и концентрации соли.

Наиболее часто встречается следующий механизм загущения. Молекулы загустителя свёрнуты в клубки. Попадая в воду или в среду, содержащую свободную воду (например, в напиток или в смесь для мороженого), клубок молекулы загустителя благодаря сольватации раскручивается, подвижность молекул воды ограничивается, а вязкость раствора возрастает.

Свойства загустителей, особенно нейтральных полисахаридов, можно менять путём физической (например, термической) обработки или путём химической модификации (например, введением в молекулу нейтральных или ионных заместителей). Путём химической или физической модификации крахмала можно добиться: понижения или повышения температуры его клейстеризации; понижения или повышения вязкости клейстера; повышения растворимости в холодной воде; появления эмульгирующих свойств; снижения склонности к ретроградации; устойчивости к синерезису, кислотам, высоким температурам, циклам оттаивания-замораживания. При этом получают разные виды модифицированных крахмалов (Е 1400...1405, Е 1410...1414, Е 1420...1423, Е 1440, Е 1442, Е 1443, Е 1450). К модифицированным полисахаридам относят сложные эфиры целлюлозы Е 461...467.

Гели (желе) представляют собой дисперсные системы, по крайней мере двухкомпонентные, состоящие из дисперсной фазы, распределённой в дисперсионной среде. Дисперсионной средой является жидкость. В пищевых системах это обычно вода, и поэтому гель носит название гидрогеля. Дисперсной фазой является гелеобразователь, полимерные цепи которого образуют поперечно сшитую сетку и не обладают той подвижностью, которая есть у молекул загустителя в высоковязких растворах. Вода в такой системе физически связана и тоже теряет подвижность. Следствием этого является изменение консистенции пищевого продукта. Структура и прочность пищевых гелей, полученных с использованием разных гелеобразователей, могут сильно различаться.

Гель практически является закреплённой формой коллоидного раствора (золя). Для превращения золя в гель необходимо, чтобы между распределёнными в жидкости молекулами начали действовать силы, вызывающие межмолекулярную сшивку. Этого можно добиться разными способами: снижением количества растворителя за счёт испарения; понижением растворимости распределённого вещества за счёт химического взаимодействия; добавкой веществ, способствующих образованию связей и поперечной сшивке; изменением температуры и регулированием величины рН.

Начало желирования сопровождается замедлением броуновского движения частиц дисперсной фазы (возрастанием вязкости), их гидратацией и образованием полимерной сетки. Способность полимеров образовывать полимерную сетку зависит от длины и числа линейно ориентированных участков их молекул, а также наличия боковых цепей, создающих стерические затруднения при межмолекулярном взаимодействии. Механизмы образования гелей могут сильно различаться, в настоящее время выделяют три основных механизма; сахарокислотный (высокоэтерифицированные пектины), модель "яичной упаковки" (например, низкоэте-рифицированные пектины) и модель двойных спиралей (например, агар).

ТОВАРНЫЕ ФОРМЫ И ПРИМЕНЕНИЕ

Загустители и гелеобразователи выпускаются в виде порошков, стандартизованных с помощью инертных наполнителей (чаще всего сахара) по вязкости 1%-ного раствора (например, гуаровая камедь) или по прочности стандартного геля (например, агары, желатины, пектины). Прочность геля (студня), в соответствии с Российскими стандартами, определяется в граммах по Валенту (ГОСТ 11293-89, п. 4.12), в других странах - по Блуму (bloom). Примерное соответствие этих единиц представлено в табл. 13.

 

Взаимосвязь различных единиц прочности студня

Загуститель Прочность студня
по Блуму, г/см2 по Валенту, г
Желатин 150 500
200 800
250 1100
280 1300
Агар 600 1400
700 1800
800 2200
900 2600
1000 2800

 

Загустители и гелеобразователи обычно используют в виде водных растворов или вносят в водную фазу пищевого продукта, поскольку непременным условием их действия является растворение в холодной воде или диспергирование в холодной воде с последующим растворением в горячей. При растворении или диспергировании могут образовываться комки, что вызывается высокой влагоудерживающей способностью загустителей и гелеобразователей. Для предотвращения комкования рекомендуется перед растворением (диспергированием) смешать добавку с трёх-пятикратным количеством рецептурного количества сахара-песка или других сухих компонентов.

Не рекомендуется готовить водные растворы загустителей и гелеобразователей заранее. Водные растворы гидроколлоидов являются исключительно благоприятной средой для развития микроорганизмов. Не случайно питательными средами в микробиологии являются агаровые и желатиновые студни.

При совместном использовании двух и более загустителей возможно проявление синергического эффекта: смеси загущают сильнее, чем можно было бы ожидать от суммарного действия компонентов. Это проявляется, например, при смешении ксантана с гуаровой камедью или с камедью рожкового дерева. В последнем случае возможно даже гелеобразование. Синергический эффект повышения вязкости может быть достигнут также при комбинировании загустителей с некоторыми биополимерами белковой природы, особенно часто он наблюдается с белками молока (например, карраги-наны). При совместном использовании различных гелеобразователей также возможно проявление эффекта синергизма (взаимного усиления). Поэтому в пищевой промышленности всего мира такое широкое применение находят смеси загустителей и гелеобразователей. Чаще всего их называют стабилизаторами, стабилизационными системами или стабилизаторами-загустителями. Если же в их состав входят эмульгаторы, то смеси носят название стабилизаторов-эмульгаторов. До сих пор эти виды комплексных пищевых добавок были представлены только зарубежными торговыми марками (Grindsted, Palsgaard, Cremodan и др.), однако сейчас появились стабилизаторы и стабилизаторы-эмульгаторы отечественного производства (например, Стабилан).

Загустители и гелеобразователи, как правило, являются достаточно эффективными стабилизаторами замутнения, сохраняя во взвешенном состоянии мелкодисперсные частицы замутнённых жидкостей: соков, шоколадного молока, замутнённых прохладительных напитков. Стабилизирующее действие гидроколлоидов на замутнённые жидкости может быть различным. Большинство гидроколлоидов увеличивают вязкость жидкой фазы, тем самым затрудняя перемещение по ней частичек мути. Растительные камеди (например, гуммиарабик) предотвращают осаждение и всплывание на поверхность частичек мути, не увеличивая заметно вязкость напитка. Стабилизирующее действие кислого полисахарида карбоксиметилцеллюлозы (КМЦ) на фруктовый сок с мякотью основано на нейтрализации образующимися при диссоциации отрицательно заряженными молекулами КМЦ положительного заряда поверхности замутняющих частиц. Таким образом сокращается возможное взаимодействие между заряженными частицами замутнителя, способное вызвать флокуляцию. Пектин, подобно другим загустителям, увеличивет вязкость замутнённых напитков (например, овощных соков), а также, обладая собственным отрицательным зарядом, нейтрализует, подобно КМ1Д, положительный заряд на поверхности замутняющих частиц. Всё это вместе очень эффективно предотвращает распад суспензии.

Гидроколлоиды используются для повышения пеностойкости ряда продуктов, например, аналогов взбитых сливок, пива, низкожирных пен. Чем больше пена содержит свободной воды, тем меньше её стойкость. Снизить количество свободной воды можно, добавив загустители или гелеобразователи. Если в процессе производства работают с горячей водой, используют преимущественно гелеобразователи, желирующие при нагревании (агар, каррагинан или желатин). Если же используется холодная вода, следует применять растворимые в холодной воде вещества (например, карбоксиметилцеллюлозу). Добавка гидроколлоидов составляет, как правило, 0,1..0,6%.

Гидроколлоиды (например, КМЦ) благодаря своей способности связывать воду могут регулировать её активность (aw) в пищевых продуктах, то есть, выполнять функцию влагоудерживающих агентов, предохраняя продукты от высыхания, а также ухудшая условия существования микроорганизмов. И то и другое способствует увеличению сроков годности пищевых продуктов.

Несмотря на такое многообразие технологических функций основное действие загустителей и гелеобразователей - загущение и образование гелей.

Желатины образуют легкоплавкие гели, которые плавятся уже во рту. Варьируя марку и количество желатина, можно получить пастообразный, мягкий желированный или резиноподобный продукт. Образование геля начинается при температуре ниже 30°С, а уже при 32..35°С гель обратимо плавится. Прочность его зависит от pH среды, достигая максимума в интервале pH от 5,5 до 11,0. Добавка солей может полностью предотвратить образование геля. Желатин используется в производстве мясных и рыбных продуктов (студни, консервы), глазурей, десертов, кондитерских изделий (мармеладо-пастильных). Как правило, желатин сначала замачивают в воде в течение 35-40 минут для набухания, затем разогревают до температуры 65...70°С. Приготовленный таким образом желатиновый раствор используется в пищевом производстве. Обычная дозировка желатина составляет 2... 10%.

В продаже встречаются желатины двух типов - А и В. Желатины типа А получают кислотной обработкой коллагена свиных шкур. Желатины типа В получают щелочной обработкой костей крупного рогатого скота. При равной с желатинами типа В желирующей способности желатины типа А имеют меньшую вязкость и лучшую формоудерживающую способность.

Высокоэтерифицированный пектин (0,3...0,5%-ный раствор) в кислых растворах при определённом содержании сухих веществ (табл. 14) и охлаждении медленно (20... 120 мин) образует прозрачный неплавкий гель с блестящим изломом. Высокоэтерифицированный пектин применяется в производстве кондитерских желейных и пастильных изделий, для стабилизации кисломолочных напитков. Растворимость высокоэтерифицированного пектина возрастает с увеличением степени этерификации и уменьшением длины цепи. Прочность пектинового геля, независимо от вида пектина, возрастает с увеличением концентрации пектина и степени полимеризации.

В зависимости от скорости и температуры начала жели-рования высокоэтерифицированные пектины делятся на две группы - быстро и медленно желирующие. Быстро желиру-ющие пектины имеют более высокую степень этерификации и желируют при более высоких значениях рН. Наиболее благоприятная область pH для быстро желирующих пектинов от 3,0 до 3,4, для медленно желирующих - от 2,8 до 3,2. Полностью этерифицированный пектин может желировать без добавления кислоты, только с сахаром.

Быстро желирующие пектины применяются в производстве варенья, особенно при температуре разлива выше 85°С. Они гарантируют равномерное распределение фруктов по всему объёму варенья. Медленно желирующие пектины преимущественно используются в производстве фруктовых желе, мармеладов или варенья, если температура разлива ниже 70°С, и заботиться о равномерном распределении фруктов нет необходимости. Изменением количества сахара и величины pH можно добиться ускорения процесса желирования. Наоборот, замедлить желирование позволяет использование буферных солей-ретардаторов. Ретардаторами являются, как правило, соли одновалентных катионов (например, ионов К+) и молочной, винной, лимонной или фосфорной кислот. Катионы мешают пектиновым цепочкам сблизиться для образования геля. Результатом является увеличение времени желирования и понижение его температуры. Кроме того, буферные соли повышают pH перед дозировкой кислоты, что помогает предотвратить преждевременное желирование. Степень этих изменений можно регулировать концентрацией буферных солей, хотя слишком высокая дозировка солей может отрицательно сказаться на вкусе и прочности геля.

 

Поведение основных гидроколлоидов в водных системах

Код Добавка Растворимость в воде
Е 400 Альгиновая кислота При нагревании (набухает при комнатной температуре)
E 401...E 404 Альгинаты При комнатной температуре
E 406 Агар При кипячении (набухает при комнатной температуре)
E 407 Каррагинаны:
Х-каррагинан
i-каррагинан
к-каррагинан

При комнатной температуре
При нагревании (Na-соль при комнатной температуре)
Тоже
E 410 Камедь рожкового дерева При нагревании не выше 80°С
E 412 Гуаровая камедь При комнатной температуре
E 415 Ксантановая камедь  
E 418 Геллановая камедь При нагревании (диспергируема в холодной воде)
E 440 Пектины:
высокометоксилированный
низкометоксилированный
При комнатной температуре
  Желатин При нагревании > 40°С (набухает при комнатной температуре)

Стабильность гелей

Условия гелеобразования Стабильность гелей
При подкислении При pH < 4 или в присутствии ионов Са2+
При температуре ниже 32...39°С При pH > 4,5 термообратимы, устойчивы к кислотам
Прочных гелей не образует  
При температуре ниже 49-55°С, в присутствии ионов Са2+ При pH > 3,8 термообратимы, стабильны при замораживании/оттаивании
При температуре ниже 49-55°С, в присутствии ионов К+ При pH > 3,8 термообратимы, нестабильны при замораживании/оттаивании
В смеси с к-каррагинаном, ксантаном Не желирует
В смеси с камедью рожкового дерева  
При охлаждении Устойчив к разрезу, склонен к синерезису
При pH < 4 и содержании сухих веществ в системе 55-80%, при температуре ниже 60..90°С Термонеобратимы
В присутствии ионов Са2+ (> 200 мг/л), При температуре ниже 60...40°С Термообратимы
При температуре ниже 30°С  

 

Низкоэтерифицированный, т. е. сильно ионогенный, пектин (0,5...1,5%-ный раствор) в Са2+-содержащих растворах при охлаждении образует почти прозрачный, плавящийся гель. Скорость желирования и прочность геля зависят от ионов, образующих комплексы с Са2+ (цитраты, фосфаты), от значения pH и концентрации сахара. Низкоэтерифицированные и амидированные пектины применяются обычно в качестве загустителя и стабилизатора консистенции в производстве кисломолочных продуктов, фруктовых консервов, йогуртов, молочных десертов, напитков, кетчупов. Пектин позволяет получать термостабильные фруктовые начинки, не растекающиеся при выпечке, а также нап-паж (глянец для выпечных изделий).

Агар является эффективным гелеобразователем. Его геле-образующая способность примерно в 10 раз выше, чем у желатина. Уже 0,85%-ный водный раствор агара образует при охлаждении стабильный, стойкий к надрезу гель, обладающий стекловидным изломом. Этот гель плавится лишь при 80°С, что даёт ему преимущество по сравнению с желатином при использовании для покрытий и заливок в консервах, особенно мясных. Зефир, пастила, мармелад, фрукты в желе, жевательная резинка благодаря 1...2% агара приобретают свои специфические свойства. Здесь агар часто комбинируют с другими гелеобразователями и загустителями. Агар нерастворим в холодной воде, поэтому для получения водного раствора агара его кипятят с водой.

Применение отечественного и импортного агаров несколько различается. Отечественный агар обычно представляет собой пластинки или крупинки, которые необходимо подвергнуть операциям замачивания, промывки и набухания для удаления дурнопахнущих и красящих веществ, а также для ускорения растворения. Для промывки и набухания воздушно-сухой агар взвешивают порциями по 500 г в мешочки из бязи или марли (в два слоя) и помещают в ванну с проточной водой при температуре 15...25°С на 1...3 часа. Продолжительность замочки зависит от степени окрашенности агара и температуры воды. По окончании замочки и набухания мешочки с агаром вынимают из ванны и в течение 15-30 мин дают воде стечь. Затем агар добавляют в воду и кипятят до полного растворения.

Импортный агар обычно представляет собой порошок без постороннего запаха и остаточных красящих веществ. Он не требует предварительного замачивания и промывки. Сухой агар добавляется в воду, и после 5... 10 мин кипячения образует раствор.

При варке агаро-сахаро-паточного сиропа, в зависимости от применяемого агара, последовательность внесения компонентов различная. При работе с отечественными агарами сначала загружают воду, затем набухший агар, который при кипячении растворяют в воде. После полного растворения агара загружают сахар-песок, по окончании растворения которого загружают патоку. При работе с импортными агарами сначала варят сахарный сироп, затем добавляют сухой или набухший (в течение 30 мин) агар. После полного растворения агара загружают патоку. Обычно импортный агар может подвергаться тепловой обработке при уваривании не более 10 мин.

Причиной широкого применения каррагинана является его способность загущать практически любые пищевые продукты и образовывать прозрачный плавящийся гель. Качество этого геля можно существенно менять с помощью других полисахаридов, в особенности, добавлением камеди рожкового дерева.

В зависимости от особенностей химического строения различают i- (йота), к- (каппа) и Х- (лямбда) каррагинаны. При применении очень важно соотношение этих трёх типов каррагинана, количество других типов незначительно. Они по-разному ведут себя в различных растворителях (табл. 15). к-Каррагинан желирует только в присутствии ионов К+, образуя хрупкие неустойчивые гели. Х-Каррагинан самостоятельно не желирует. i-Каррагинан в присутствии ионов Са2+ образует прочные эластичные гели, не склонные к синерезису и устойчивые к циклам замораживания-оттаивания (см. табл. 14). Каррагинаны проявляют эффект синергического усиления казеинового геля: одна и та же прочность геля достигается в молочной среде при концентрации каррагинана в 10 раз меньшей, чем в водной. к-Каррагинан и i-каррагинан образуют гели с молоком при концентрации 0,02...О,2%. Даже Х-каррагинан образует с молоком слабые гели.

Каррагинан и фурцеллеран используют для формирования консистенции овощных и фруктовых консервов, плавленых сыров, творожных изделий, сливок, мороженого, соусов, кисломолочных и мясных продуктов, концентрированного молока, маргаринов. Обычная дозировка - 5-10 г/кг продукта.

В молочных продуктах предпочтительнее использовать каппа- и иота-каррагинан, в соусах - лямбда-каррагинан.

Альгиновая кислота и её соли используются в качестве загустителей и гелеобразователеи в плавленом сыре, твороге, мясо- и рыбопродуктах, майонезах, соусах, мороженом и других десертах в количестве 2... 10 г/кг; в кондитерских изделиях в количестве 5...30 г/кг. Пропиленгликольальгинат применяется в качестве загустителя и эмульгатора в производстве десертов, начинок, мороженого, сахарных кондитерских изделий, сдобы, соусов, жевательной резинки в количестве нескольких грамм на 1 кг. В количестве нескольких десятых грамма на литр напитка пропиленгликольальгинат не только загущает, но и стабилизирует пену. Например, добавление пропиленгликольальгината в пиво за 2...3 дня до фильтрации в количестве 50...500 мг/л резко улучшает пенообразующую способность пива.

Наиболее популярными загустителями являются камедь бобов рожкового дерева, гуар и ксантан.

Камедь рожкового дерева (Е 410) широко используется в качестве загустителя благодаря тому, что на неё не влияют кислоты, соли и нагревание (как и на гуаран). При смешении с ксантаном, каррагинаном, гелланом, агаром или альгинатом камедь бобов рожкового дерева усиливает желирующее действие последних. Основной областью использования камеди рожкового дерева является производство плавленых сыров (4-6 г/кг), мороженого и молочных продуктов (5... 10 г/кг), фруктовых и овощных консервов (3-10 г/кг). Она может добавляться в тесто для сохранения свежести хлебобулочных изделий в количестве 1...5 г/кг.

Высокая степень разветвления молекулы обеспечивает хорошую растворимость гуаровой камеди (Е 412) даже в холодной воде. Однопроцентный раствор камеди обладает псевдопластическими и тиксотропными свойствами, имеет вязкость 3000...7000 сПз, которая почти не изменяется при добавлении солей и кислот. Гуаровая камедь используется для загущения и стабилизации соусов, майонезов, кетчупов, мороженого (в количестве до 1,0%), может использоваться для сохранения свежести хлебобулочных изделий в (количестве 0,2...0,5%). Вместо гуара и камеди рожкового дерева может использоваться камедь тары.

Ксантановая камедь (Е 415) является очень сильным загустителем, чьё действие совершенно не зависит от кислот, солей, нагрева и механического воздействия. При взаимодействии с другими загустителями, особенно с камедью рожкового дерева, ксантан образует тиксотропные, плавящиеся при 80...90°С, гели. Благодаря химической стабильности и независимости от внешних воздействий ксантан особенно пригоден для загущения и/или желирования сильнокислых и соле-содержащих продуктов. Он оказывает хорошее стабилизирующее действие на эмульсии, суспензии и пены. В майонезах, соусах, молочных продуктах, фруктовых и овощных консервах ксантан используется обычно в количестве 1...4 г/кг, в напитках - 0,2...0,5 г/кг.

Геллановая камедь (Е 418) легко диспергируема в холодной воде, растворяется при нагревании и желирует при охлаждении. Уже начиная с концентрации 0,05% гели устойчивы к разрезу, но очень склонны к синерезису. Прочность, твёрдость гелей из геллановой камеди и их плавление зависят от присутствия ионов кальция и других солей. Поэтому геллановая камедь часто применяется в комбинации с другими гелеобразователями - ксантаном, камедью рожкового дерева, модифицированными крахмалами и др. Такие свойства гелей, как прозрачность, стабильность, высвобождение аромата, улучшаются с помощью геллана.

Гуммиарабик (Е 414) вряд ли можно считать загустителем, поскольку его растворы имеют низкую вязкость даже при концентрации 50%, однако он может стабилизировать дисперсии. Это используется в производстве ароматизаторов и фруктовых порошков, полученных распылительной сушкой: хорошая растворимость в воде при незначительной гигроскопичности гуммиарабика обеспечивает быстрое растворение порошка. Гуммиарабик стабилизирует эмульсии "масло в воде", не изменяя их консистенцию, это его свойство используют в производстве эмульсий для напитков и напитков на основе эфирных масел. Гуммиарабик позволяет ароматизатору при хранении напитка оставаться равномерно распределённым по всему объёму.

Камедь гхатти (Е 419) также оказывает хорошее стабилизирующее действие на эмульсии и дисперсии. Она применяется вместо гуммиарабика или вместе с ним.

Смола лиственницы (арабиногалактан, Е 409), так же как и гуммиарабик, имеет в растворах, в том числе концентрированных, низкую вязкость (в 40%-ном растворе только 23 сПз); эти растворы устойчивы к действию солей, кислот и щелочей и могут стабилизировать эмульсии и суспензии (например, концентраты ароматизаторов). Как безвкусный наполнитель смола лиственницы может придавать низкокалорийным продуктам ощущение наполненности во рту.

Даже сильно разбавленные растворы трагаканта (Е 413) имеют высокую вязкость, которая не меняется ни при нагревании, ни в сильнокислой среде. Поэтому трагакант применяется в очень кислых соусах, заливках и фруктовых продуктах, где он не может быть заменён дешёвыми продуктами (пропиленгликольальгинатом, метилцеллюлозой, ксанта-ном). Обычные дозировки - от 5 до 10 г/кг.

Дорогостоящий трагакант иногда заменяют в этих продуктах камедью карайи (Е 416), хотя она не обладает кисло-тостойкостью трагаканта и имеет специфический привкус. Способность набухать на холоду и синергическое усиление желирующей силы в присутствии молочного белка открывают широкие возможности применения карайи в молочной и сырной продукции, а также в специальных мясопродуктах.

Модифицированная целлюлоза (Е 461, Е 463...465, Е 467) используется в качестве загустителя (в холодной воде), при нагревании происходит обратимое гелеобразование. Все виды модифицированной целлюлозы, особенно метилцел-люлоза, являются хорошими наполнителями в таблетках. Они позволяют уменьшить добавку жира в продукт, а в сдобных хлебобулочных изделиях (в количестве 1...5 г/кг) обеспечивают увеличение удельного объёма за счёт усиления газообразования. Модифицированные целлюлозы (5... 10 г/кг) загущают при холодном и горячем способе производства кетчупы и соусы, стабилизируют пену, улучшают структуру, уменьшают синерезис в мороженом и других взбитых десертах. Очень малое количество модифицированной целлюлозы (0,1...0,5 г/кг), добавленное в газированные напитки, способствует замедлению выделения из них газа.

Карбоксиметилцеллюлоза (КМЦ) в форме натриевой соли (Е 466) является одной из самых популярных пищевых добавок Она хорошо растворима в холодной и горячей воде, однако является ионогенным эфиром целлюлозы, и её действие зависит от концентрации соли и других свойств среды. Несмотря на это области использования КМЦ чрезвычайно многочисленны: десерты, мороженое, желе, майонезы, соусы, кремы, оболочки для мяса, рыбы, кондитерских изделий, орехов. Обычно дозировка составляет 1...8 г/кг. Существуют товарные формы КМЦ, дозировки которых могут заметно отличаться от стандартных.

Нативные (натуральные) крахмалы обладают пищевой ценностью и не относятся к пищевым добавкам, но их основной технологической функцией является загущение и желе-образование. Незначительная стабильность клейстера/геля и его зависимость от температуры, старения, кислотности и солей ограничивают применение нативных крахмалов в качестве загустителей и гелеобразователей. Физическая и химическая модификации крахмала меняют свойства крахмального клейстера/геля (см. выше), вследствие чего расширяется обласгь применения и снижаются рекомендуемые дозировки. Крахмалы, нативные и модифицированные, используются для загущения и стабилизации овощных, грибных, рыбных консервов, кисломолочных продуктов, кетчупов, майонезов, соусов, продуктов быстрого приготовления, кондитерских изделий. Рекомендуемые дозировки модифицированных крахмалов, как правило, не превышают 60 г/кг. Крахмалы используются в производстве детского питания, в т.ч. в питании грудных детей.

Образующийся при охлаждении растворов гидролизованных крахмалов (Е 1401, Е 1402, Е 1405) клейстер не очень клейкий и только при высоком содержании сухих веществ легко образует гель. Гидролизованные крахмалы применяются в качестве наполнителей в супах, соусах; в качестве гелеобразователей во фруктовых жевательных конфетах; как компоненты глазирующих составов и носители пищевых добавок.

Набухающие крахмалы используют в выпечных изделиях, продуктах быстрого приготовления и других пищевых продуктах, для которых характерно короткое время хранения после перемешивания, так что быстрая ретроградация клейстера не оказывает отрицательного влияния.

Благодаря ацетилированию старение крахмала замедляется, но он становится менее стойким в отношении нагревания, механического воздействия и кислот, поэтому пищевые продукты с ацетатными крахмалами (Е 1420, Е 1421) нельзя стерилизовать. Ацетилированные сшитые крахмалы (Е 1414, Е 1422, Е 1423) применяют везде, где может использоваться обычный крахмал. Наиболее часто они используются для загущения и стабилизации кетчупов и других соусов. В противоположность ацетилированному крахмалу оксипропилированные крахмалы (Е 1440, Е 1442, Е 1443) устойчивы при варке и стерилизации. Сшитый Е 1442, кроме того, устойчив к надрезу, циклам замораживания/оттаивания и желирует.

Фосфатные крахмалы (Е 1410, Е 1412, Е 1413) применяются в тех же продуктах, что и нативные, обеспечивая получение консистенции, более стойкой к ретроградации (Е 1410), к воздействию температуры, кислот и надрезу (Е 1412), к циклам замораживания-оттаивания (Е 1413), чем при использовании нативных крахмалов. Вследствие этерификации октенилянтарной кислотой крахмал (Е 1450) приобретает эмульгирующие и пеностабилизирующие свойства. Он с успехом может применяться в производстве майонеза и как эмульгатор, и как стабилизатор эмульсии. Крахмалглицерины (Е 1411, Е 1423, Е 1443) в пищевой промышленности практически не применяются.